SHMS Intermediate Atmospheric Science Collection Resources (50)

View
Selected filters:
  • Middle School
  • Atmospheric Science
  • TeachEngineering
  • TeachEngineering NGSS Aligned Resources
  • Pedagogy in Action
  • NGSS@NSTA
Air Masses
Conditions of Use:
Read the Fine Print
Rating

This is Activity 12 of a set of Level 1 activities designed ...

This is Activity 12 of a set of Level 1 activities designed by the Science Center for Teaching, Outreach, and Research on Meteorology (STORM) Project. The authors suggest that previous activities in the unit be completed before Activity 12: Air Masses, including those that address pressure systems and dew point temperature. In Activity 12, the students learn about the four main types of air masses that affect weather in the United States, their characteristic temperatures, and humidity levels as it relates to dew point temperatures. The lesson plan follows the 5E format. Initially, students discuss local weather and then examine surface temperature and dew point data on maps to determine patterns and possible locations of air masses. They learn about the source regions of air masses and compare their maps to a forecast weather map with fronts and pressure systems drawn in. During the Extension phase, students access current maps with surface and dew point temperatures at http://www.uni.edu/storm/activities/level1 and try to identify locations of air masses. They sketch in fronts and compare their results to the fronts map. Evaluation consists of collection of student papers.

Subject:
Atmospheric Science
Material Type:
Activity/Lab
Provider:
National Oceanic and Atmospheric Administration
National Science Teachers Association (NSTA)
University of Northern Iowa
Provider Set:
NGSS@NSTA
Science Center for Teaching, Outreach, and Research on Meteorology (STORM)
Date created
12/10/2015
Air Pollution
Conditions of Use:
Read the Fine Print
Rating

Students are introduced to the concept of air quality by investigating the ...

Students are introduced to the concept of air quality by investigating the composition, properties, atmospheric layers and everyday importance of air. They explore the sources and effects of visible and invisible air pollution. By learning some fundamental meteorology concepts (air pressure, barometers, prediction, convection currents, temperature inversions), students learn the impact of weather on air pollution control and prevention. Looking at models and maps, they explore the consequences of pollutant transport via weather and water cycles. Students are introduced to acids, bases and pH, and the environmental problem of acid rain, including how engineers address this type of pollution. Using simple models, they study the greenhouse effect, the impact of increased greenhouse gases on the planet's protective ozone layer and the global warming theory. Students explore the causes and effects of the Earth's ozone holes through an interactive simulation. Students identify the types and sources of indoor air pollutants in their school and home, evaluating actions that can be taken to reduce and prevent poor indoor air quality. By building and observing a few simple models of pollutant recovery methods, students explore the modern industrial technologies designed by engineers to clean up and prevent air pollution.

Subject:
Engineering
Atmospheric Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Date created
16/10/2015
Air Pollution in the Pacific Northwest
Conditions of Use:
Read the Fine Print
Rating

Students are introduced to measuring and identifying sources of air pollution, as ...

Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
CREAM GK-12 Program, Engineering Education Research Center, College of Engineering and Architecture,
Farren Herron-Thorpe (Developer), Engineering Science, Washington State University
Date created
07/11/2014
Air Under Pressure
Conditions of Use:
Read the Fine Print
Rating

Students are introduced to air masses, with an emphasis on the differences ...

Students are introduced to air masses, with an emphasis on the differences between and characteristics of high- versus low-pressure air systems. Students also hear about weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date created
16/02/2011
Backyard Weather Station
Conditions of Use:
Read the Fine Print
Rating

Students use their senses to describe what the weather is doing and ...

Students use their senses to describe what the weather is doing and predict what it might do next. After gaining a basic understanding of weather patterns, students act as state park engineers and design/build "backyard weather stations" to gather data to make actual weather forecasts.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date created
16/10/2015
Battling for Oxygen
Conditions of Use:
Read the Fine Print
Rating

Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. ...

Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. Students explore the dynamic and competing upper atmospheric roles of the protective ozone layer, the sun's UV radiation and harmful human-made CFCs (chlorofluorocarbons).

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tom Rutkowski
Tyman Stephens
Date created
16/10/2015
Biorecycling: Using Nature to Make Resources from Waste
Conditions of Use:
Read the Fine Print
Rating

By studying key processes in the carbon cycle, such as photosynthesis, composting ...

By studying key processes in the carbon cycle, such as photosynthesis, composting and anaerobic digestion, students learn how nature and engineers "biorecycle" carbon. Students are exposed to examples of how microbes play many roles in various systems to recycle organic materials and also learn how the carbon cycle can be used to make or release energy.

Subject:
Engineering
Atmospheric Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Membrane Biotechnology Laboratory,
Robert Bair, Ivy Drexler, Jorge Calabria, George Dick, Onur Ozcan, Matthew Woodham, Caryssa Joustra, Herby Jean, Emanuel Burch, Stephanie Quintero, Lyudmila Haralampieva, Daniel Yeh
Date created
07/11/2014
Building a Barometer
Conditions of Use:
Read the Fine Print
Rating

Students investigate the weather from a systems approach, learning how individual parts ...

Students investigate the weather from a systems approach, learning how individual parts of a system work together to create a final product. Students learn how a barometer works to measure the Earth's air pressure by building a model using simple materials. Students analyze the changes in barometer measurements over time and compare those to actual weather conditions. They learn how to use a barometer to understand air pressure and predict actual weather changes.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Megan Podlogar
Date created
16/10/2015
Carbon Cycles
Conditions of Use:
Read the Fine Print
Rating

Students are introduced to the concept of energy cycles by learning about ...

Students are introduced to the concept of energy cycles by learning about the carbon cycle. They will learn how carbon atoms travel through the geological (ancient) carbon cycle and the biological/physical carbon cycle. Students will consider how human activities have disturbed the carbon cycle by emitting carbon dioxide into the atmosphere. They will discuss how engineers and scientists are working to reduce carbon dioxide emissions. Lastly, students will consider how they can help the world through simple energy conservation measures.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date created
16/02/2011
Cleaning Air with Balloons
Conditions of Use:
Read the Fine Print
Rating

Students observe and discuss a simple balloon model of an electrostatic precipitator ...

Students observe and discuss a simple balloon model of an electrostatic precipitator to better understand how this pollutant recovery method functions in cleaning industrial air pollution.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Denise Carlson
Gwendolyn Frank
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date created
16/10/2015
Dangerous Air
Conditions of Use:
Read the Fine Print
Rating

By tracing the movement of radiation released during an accident at the ...

By tracing the movement of radiation released during an accident at the Chernobyl nuclear power plant, students see how air pollution, like particulate matter, can become a global issue.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tyman Stephens
Date created
16/10/2015
Dinosaur Breath
Conditions of Use:
Read the Fine Print
Rating

Through discussion and hands-on experimentation, students learn about the geological (ancient) carbon ...

Through discussion and hands-on experimentation, students learn about the geological (ancient) carbon cycle. They investigate the role of dinosaurs in the carbon cycle and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful CO2 emissions.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date created
16/10/2015
Dripping Wet or Dry as a Bone?
Conditions of Use:
Read the Fine Print
Rating

Students use a sponge and water model to explore the concept of ...

Students use a sponge and water model to explore the concept of relative humidity and create a percent scale.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date created
16/10/2015
For Your Eyes Only
Conditions of Use:
Read the Fine Print
Rating

Air is one of Earth's most precious resources, and we need to ...

Air is one of Earth's most precious resources, and we need to take care of it in order to preserve the environment and protect human health. To this end, students develop their understanding of visible air pollutants with an incomplete combustion demonstration, a "smog in a jar" demonstration, and by building simple particulate matter collectors.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date created
16/10/2015
Global Climate Change Lesson
Conditions of Use:
Read the Fine Print
Rating

Students learn how the greenhouse effect is related to global warming and ...

Students learn how the greenhouse effect is related to global warming and how global warming impacts our planet, including global climate change. Extreme weather events, rising sea levels, and how we react to these changes are the main points of focus of this lesson.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Christie Chatterley
Denise W. Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Karen King
Malinda Schaefer Zarske
Date created
16/02/2011
Good News – We're on the Rise!
Conditions of Use:
Read the Fine Print
Rating

Students build and observe a simple aneroid barometer to learn about changes ...

Students build and observe a simple aneroid barometer to learn about changes in barometric pressure and weather forecasting.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date created
16/10/2015
Here Comes the Hurricane! Saving Lives through Logical Reasoning and Computer Science
Conditions of Use:
Read the Fine Print
Rating

Students use a hurricane tracking map to measure the distance from a ...

Students use a hurricane tracking map to measure the distance from a specific latitude and longitude location of the eye of a hurricane to a city. Then they use the map's scale factor to convert the distance to miles. They also apply the distance formula by creating an x-y coordinate plane on the map. Students are challenged to analyze what data might be used by computer science engineers to write code that generates hurricane tracking models. Then students analyze a MATLAB® computer code that uses the distance formula repetitively to generate a table of data that tracks a hurricane at specific time intervals. Students come to realize that using a computer program to generate the calculations (instead of by hand) is very advantageous for a dynamic situation like tracking storm movements. Their inspection of some MATLAB code helps them understand how it communicates what to do using mathematical formulas, logical instructions and repeated tasks. They also conclude that the example program is too simplistic to really be a useful tool; useful computer model tools must necessarily be much more complex.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Armando Vital, K. B. Nakshatrala, Justin Chang, Fritz Claydon, Rodrigues, Stuart Long
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date created
07/11/2014
Homes for Different Climates
Conditions of Use:
Read the Fine Print
Rating

Students learn about some of the different climate zones in China and ...

Students learn about some of the different climate zones in China and consider what would be appropriate design, construction and materials for houses in those areas. This prepares them to conduct the associated activity(ies) in which they design, build and test small model homes for three different climate zones.

Subject:
Engineering
Atmospheric Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail T. Watrous, Stephanie Rivale, Janet Yowell, Denise W. Carlson (This material developed in part during Watrous' China Fulbright fellowship in 2009-10. Sincere thanks to the U.S. State Department and the Fulbright Program for their support.)
Integrated Teaching and Learning Program,
Date created
07/11/2014
Hot Stuff!
Conditions of Use:
Read the Fine Print
Rating

Students observe demonstrations, and build and evaluate simple models to understand the ...

Students observe demonstrations, and build and evaluate simple models to understand the greenhouse effect and the role of increased greenhouse gas concentration in global warming.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date created
07/11/2014
How Predictable!
Conditions of Use:
Read the Fine Print
Rating

Students follow weather forecasts to gauge their accuracy and produce a weather ...

Students follow weather forecasts to gauge their accuracy and produce a weather report for the class. They develop skills of observation, recording and reporting.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jane Evenson
Malinda Schaefer Zarske
Date created
16/10/2015